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Abstract
A quasi-two-dimensional antiferromagnet with a square-lattice bilayer structure
is studied with a bond operator formalism. The excitation spectrum and its
temperature dependence, the quantum phase transition from the spin-singlet
dimerized state to the Néel state, are studied. In particular the field-induced long
range order is interpreted using Bose–Einstein condensation of magnons. The
phase diagram as well as the temperature and magnetic field dependences of the
specific heat and the staggered magnetization are studied. The critical exponents
around the critical magnetic fields Hc1 and Hc2 are calculated to be about 1.5.
These results agree well with recent experimental results for BaCuSi2O6.

1. Introduction

Quantum low-dimensional antiferromagnets have attracted a great deal of attention in the past
decades. A Heisenberg antiferromagnet on a double-layer square lattice was used by Millis and
Monien [1] as a phenomenological model to capture the spin-gap behaviour observed in high-
Tc compounds such as YBa2Cu3O6+x and Bi2Sr2CaCu2O8. Quantum Hall systems, especially,
bilayer quantum Hall systems at a filling factor ν = 2 [2, 3], which can be well described
by a Heisenberg model, have provided another platform for studying the zero temperature
quantum transitions between states with different spin magnetizations. Recently, the material
BaCuSi2O6, containing strongly coupled bilayers, has been discovered and investigated [4–6]
in detail. It shows a spin gap, and the gap increases with increasing temperature [4]. When a
strong enough external magnetic field is applied, the energy gap closes and a phase transition
is observed for the measurements of specific heat, the magnetocaloric effect (MCE) and
magnetization [5]. These results are well explained by a Monte Carlo simulation on a reduced
effective hard-core boson model [5]. A critical exponent of ν = 0.63±0.03 is obtained around
the critical magnetic field Hc1 = 23.52 T [6], which is in good agreement with the mean field
prediction of ν = 2

3 for the three-dimensional XY model. Field-induced long range order in
the plane perpendicular to the external magnetic field was observed in other similar systems
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such as S = 1 antiferromagnetic chains [7], antiferromagnetic spin dimers [8], even-leg spin
ladders [9], S = 1

2 alternating chains or frustrated spin systems [10] and an S = 1 three-
dimensional antiferromagnet with large single-ion anisotropy [11]. These experiments are
interpreted with the idea of Bose–Einstein condensation (BEC) of magnons [12, 13], and some
of them have been studied theoretically with quantum Monte Carlo simulations [14, 15], Bose–
Einstein Hartree–Fock theory [16, 17] and bond operator mean field theory [18, 19]. Although
the experimentally reported critical exponent α is discrete to some extent, the theoretical result
converges to 1.5.

Concerned with the material BaCuSi2O6, we study a coupled bilayer system described by
the Hamiltonian

H = J
∑

�r
�S�r1 · �S�r2 + 1

2 J ′ ∑

�r ,�δ1

(�S�r1 · �S�r+�δ11 + �S�r2 · �S�r+�δ12)

+ 1
2 J ′′ ∑

�r
(�S�r1 · �S�r+�ez2 + �S�r2 · �S�r−�ez1) − gµB B

∑

�r
(Sz

�r1 + Sz
�r2), (1)

where
∑

�r sums over the singlet bonds and �δ1 = ±�ex , ±�ey denotes the nearest neighbours in the
x–y plane. An external magnetic field is applied with µB the Bohr magneton. When J ′′ = 0,
the model (1) reduces to an isolated two-layer system and has been studied extensively. At a
critical ( J ′

J )c ∼ 0.4, a transition from a disordered gapped state to Néel state occurs [20–22].
The field- and temperature-dependent properties, such as susceptibility and specific heat, are
studied with the strong coupling expansions [23–25]. Although the ground state phase diagram
in the external magnetic field and the transition features have been studied [26, 27], the phase
transitions at finite temperatures are less studied. In this paper we use the bond operator
formalism to study the model (1). In particular we will study the phase transition induced by
the Bose–Einstein condensation of magnons. In section 2 we give the self-consistent equations
based on the bond operator formalism. In section 3 we study the effects of J ′′ on the quantum
phase transitions. Including J ′′ will decrease the critical value J ′

c. In section 4, we study the
phase transitions induced by applying an external magnetic field. Corresponding to a given
magnetic field, a critical temperature Tc(h) exists below which the Bose–Einstein condensation
of magnons occurs and long range order in the plane perpendicular to the external magnetic
field is induced. The phase diagram at finite temperature is given. The critical exponents
around Hc1 and Hc2 are calculated to be about 1.5. The dependences of specific heat and the
staggered magnetization on temperature and magnetic field are also studied. These results agree
well with the experimental results for BaCuSi2O6. The dimensional crossover behaviour with
J ′′ approaching 0 is also discussed. A summary is given in section 5.

2. Self-consistent equations based on the bond operator formalism

For two S = 1
2 spins there are four eigenstates and four boson operators were introduced [28]:

|00〉 = s†|v〉 = 1√
2
(|↑↓〉 − |↓↑〉)

|11〉 = u†|v〉 = |↑↑〉,
|10〉 = t†

z |v〉 = 1√
2
(|↑↓〉 + |↓↑〉),

|1 − 1〉 = d†|v〉 = |↓↓〉,

(2)

where |v〉 is the vacuum state and we use the eigenstates of |11〉 and |1 − 1〉 to study the effects
of a magnetic field [29]. With a constraint s†s + u†u + d†d + t†

z tz = 1, the spin operators can
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be represented by

S+
1,2 = 1√

2
(±s†d ∓ u†s + t†

z d + u†tz),

S−
1,2 = (S+

1,2)
†,

Sz
1,2 = 1

2 (±s†tz ± t†
z s + u†u − d†d).

(3)

Substituting the above boson representation into the original Hamiltonian (1) and assuming
the s bosons are condensed, 〈s〉 = 〈s†〉 = s, we get

H = H (J ) + H (J ′) + H (J ′′) + H (h) + H (µ) (4)

with
H (J ) = − 3

4 J Ns2 + 1
4 J

∑

�r
(u†

�r u�r + t†
z�r tz�r + d†

�r d�r )

H (J ′) = 1
4 J ′ ∑

�r ,�δ1

[s2(d�r − u†
�r )(d

†
�r+�δ1

− u�r+�δ1
) + (t†

z�r d�r + u†
�r tz�r )(tz�r+�δ1

d†
�r+�δ1

+ u�r+δ1 t†
z�r+δ1

)

+ h.c. + s2(tz�r + t†
z�r )(tz�r+�δ1

+ t†
z�r+�δ1

)

+ (u†
�r u�r − d†

�r d�r )(u†
�r+�δ1

u�r+�δ1
− d†

�r+�δ1
d�r+�δ1

)]
H (J ′′) = 1

8 J ′′ ∑

�r,�δ2

[s2(d�r − u†
�r )(−d†

�r+�δ2
+ u�r+�δ2

) + (t†
z�r d�r + u†

�r tz�r )(tz�r+�δ2
d†

�r+�δ2

+ u�r+δ2 t†
z�r+δ2

) + h.c. − s2(tz�r + t†
z�r )(tz�r+�δ2

+ t†
z�r+�δ2

)

+ (u†
�r u�r − d†

�r d�r )(u†
�r+�δ2

u�r+�δ2
− d†

�r+�δ2
d�r+�δ2

)]
H (h) = −h

∑

�r
(u†

�r u�r − d†
�r d�r )

H (µ) = −
∑

�r
µ�r (s2 + u†

�r u�r + t†
z�r tz�r + d†

�r d�r − 1)

(5)

where δ2 = ±�ez , h = gµB B and a temperature-dependent chemical potential µ�r is introduced
to impose the constraint condition of single occupancy. As shown by Kotov et al with the
Bruekner approach [22], the density of the triplet excitations is a small parameter and all
anomalous contributions are suppressed. The contribution from the four-operator terms is
small. By a mean-field approximation, we replace the local constraint by a global one and
let µ�r = µ [28]. When s2 is close to 1 or the density of the excitations is small, this mean-
field approximation is proved to be quite effective. Another approach to deal with the single
occupancy condition was developed by Popov and Fedotov [30]. In their functional integral
formalism they use a fermion representation and introduce a purely imaginative chemical
potential µ = iπ

2β
for S = 1

2 spins and µ = iπ
3β

for S = 1 spins to eliminate the nonphysical
states. The technique was then generalized for arbitrary spins [31] with a set of imaginary
chemical potentials µl = iπ

β
2l+1
2s+1 . J is set to 1 in the following calculations. We make mean-

field decoupling to the four-operator term1

(u†
�r u�r − d†

�r d�r )(u†
�r+�δu�r+�δ − d†

�r+�δd�r+�δ) = 2m(u†
�r u�r − d†

�r d�r) − m2 (6)

with m = 〈u†
�r u�r 〉−〈d†

�r d�r 〉. After a Fourier–Bogoliubov transformation, we get the diagonalized
Hamiltonian

H =
∑

k

(ω
(1)
k α

†
k αk + ω

(2)
k β

†
k βk + �kη

†
kηk) +

∑

k

1
2 (2ωk + �k − Ak − Bk − Dk) + c, (7)

1 The three-operator terms such as (d�r − u†
�r )(tz�r+�δ1

d†
�r+�δ1

+ u�r+δ1 t†
z�r+δ1

) are omitted. The other four-operator terms

can be considered by introducing the mean-field amounts pd = 〈d†
�r+�δ1

d�r 〉, pu = 〈u†
�r+�δ1

u�r 〉, pt = 〈t†
�r+�δ1

t�r 〉,
p′

d = 〈d†
�r+�δ2

d�r 〉, p′
u = 〈u†

�r+�δ2
u�r 〉, p′

t = 〈t†
�r+�δ2

t�r 〉, q1 = 〈u�r+�δ1
d�r 〉, q2 = 〈t�r+�δ1

t�r 〉, q ′
1 = 〈u�r+�δ2

d�r 〉 and q ′
2 = 〈t�r+�δ2

t�r 〉.
These terms have little effect on the numerical results.
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where αk = χkuk + ρkd†
−k , βk = χkd−k + ρku†

k with χ2
k = 1

2 (1 + Ak +Bk
2ωk

) and ρ2
k =

1
2 (−1 + Ak +Bk

2ωk
); ηk = θktk + φk t†

−k with θ2
k = 1

2 (1 + Dk
�k

) and φ2
k = 1

2 (−1 + Dk
�k

).

The energy gap 0 occurs at �k0 = (π, π, 0). The ground state energy per bond is e0 =
1

2N

∑
k(2ωk + �k − Ak − Bk − Dk) + 1

N c. The Gibbs free energy G = Ne0 − 1
β

∑
k ln[1 +

n(ω
(1)

k )]− 1
β

∑
k ln[1 + n(ω

(2)

k )]− 1
β

∑
k ln[1 + n(�k)] with n(ωk) = 1

eβωk −1
and β = 1

kB T . For

brevity, we present the self-consistent equations for s2, µ and m in appendix A.

3. Quantum phase transitions induced by changing J ′ and J ′′

We first study the case of h = 0. Without an external magnetic field, the magnetization m is
zero. At zero temperature, the self-consistent equations can be simplified as:

s2 = 5
2 − 3

4 [I1(d1, d2) + I2(d1, d2)],
µ = −3

4
+ 3

4s2

(
1

4
− µ

)
[I2(d1, d2) − I1(d1, d2)] (8)

with

d1 = 4J ′s2

1
4 − µ

,

d2 = J ′′s2

1
4 − µ

,

I1(d1, d2) = 1

N

∑

k

1√
1 + d1γk − d2γ

′
k

,

I2(d1, d2) = 1

N

∑

k

√
1 + d1γk − d2γ

′
k .

(9)

A single equation about d1 can then be obtained

1 − 10J ′

d1
+ 6J ′

d1
I1

(
d1,

J ′′

4J ′ d1

)
= 0. (10)

The excitation spectrum is ωk = �k = ( 1
4 − µ)

√
1 + d1γk − d2γ

′
k . According to the

experiments on BaCuSi2O6, we choose J ′ = 0.13J and J ′′ = 0.026J [4, 5]. Solving the
self-consistent equations at T = 0 numerically, we get s2 = 0.9864, µ = −0.7770 and the
energy gap 0 = ω�k0

= 0.7082J = 3.15 meV with J = 4.45 meV, which agrees well with the
experimental value 3.13 meV. (With the revised parameters [6]. J ′ = 0.51 meV = 0.1146J ,
J ′′ = 0.168 meV = 0.03775J , the numerical results are s2 = 0.9848, µ = −0.7709, and
 = 0.7355J .) The temperature dependence of the energy gap is also studied by solving
equation (15). In figure 1, we show the change of the energy gap with increasing temperature.
The energy gap changes little at low temperatures and increases fast at larger temperatures2. We
do not get a trend to a plateau value, as observed in the experiment [4]. The reason for this may
be that the value of s2 is small at higher temperatures and the approximation of 〈s†〉 = 〈s〉 = s
becomes less good.

2 When pu , pd , pt , p′
u , p′

d , p′
t , q1, q2, q ′

1 and q ′
2 are included, the degeneracy between ωk and �k will be lifted

and the longitudinal fluctuation ηk becomes a little lower. The energy gap also occurs at �k0 = (π, π, 0) with
0 = ��k0

= 0.7410J and ω�k0
= 0.7436J . The correction is very small.
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Figure 1. The energy gap increases with increasing temperature. The parameters are J ′ = 0.13J
and J ′′ = 0.026J .

Figure 2. The critical J ′
c decreases with increasing J ′′.

When d1 + d2 = 1, the energy gap goes to 0, which indicates a transition from the
disordered phase to the Néel phase. The critical J ′ and J ′′ can be obtained from the equation

J ′ = 1
10
d1

− 6
d1

I1(d1, 1 − d1)

J ′′ = 4J ′ 1 − d1

d1
.

(11)

For a given d1, we calculate J ′ and J ′′, respectively. At J ′′ = 0, the corresponding
J ′ = 0.432, in agreement with the numerical results and other analytical results [20–22]. In
figure 2, we show the critical J ′′–J ′

c curve. The critical J ′
c decreases with increasing J ′′.
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4. Field-induced long range order and condensation of magnons

When an external magnetic field is applied, the excitation spectrum splits into three branches
as expressed in appendix A. In particular, the branch ω

(1)
k decreases with increasing magnetic

field and the energy gap goes to zero at a critical magnetic field hc1 = 0 = ωk |k=(π,π,0).
When h > hc1, we assume that the energy gap stays at zero and the corresponding excitations
condense [19, 32]. A BEC amounting to nh(T ) = 1

N 〈α†
k αk〉 Ak +Bk

2ωk
|k=(π,π,0) can then be

extracted and the self-consistent equations become

s2 = 5

2
− nh(T ) − 1

N

∑

k

Ak + Bk

2ωk
[n(ω

(1)

k ) + n(ω
(2)

k ) + 1] − 1

N

∑

k

Dk

�k

[
n(�k) + 1

2

]
,

µ = −3

4
−

(
1

2
+ C(π,π,0)

A(π,π,0) + B(π,π,0)

)(
z J ′ + 1

2
z′ J ′′

)
nh(T )

+ 1

N

∑

k

[
Ak + Bk + 2Ck

4ωk
[1 + n(ω

(1)

k ) + n(ω
(2)

k )]

+
[

n(�k) + 1

2

]
Dk − 2Fk

2�k

](
z J ′γk − 1

2
z′ J ′′γ ′

k

)
,

m = 2ω(π,π,0)

A(π,π,0) + B(π,π,0)

nh(T ) + 1

N

∑

k

[n(ω
(1)

k ) − n(ω
(2)

k )],

(12)

where the summation
∑

k · · ·n(ω
(1)

k ) does not include �k0 = (π, π, 0). A condition

ω�k0
− h + (

1
2 z J ′ + 1

4 z′ J ′′)m = 0, (13)

should be added to maintain the energy gap at zero.
A field-induced staggered magnetization in the plane perpendicular to the magnetic field

has been observed in many systems [5–11], and can be explained by the condensation of
magnons. The staggered magnetization can be obtained by calculating the spin–spin correlation
function [32] or by calculating the average 〈Sx

�r 〉 directly3:

mx = s

√
nh(T )

2 − d1 − d2
, (14)

where d1 and d2 are defined in equation (9).
Equations (12)–(14) tell us that a uniform magnetization m parallel to the external

magnetic field and a staggered magnetization mx in the plane perpendicular to the applied field
will appear with the αk bosons condensed at �k0. However, at a second critical magnetic field hc2,
where the magnetization saturates (i.e. all the dimers are in the state of u†|v〉 and hence s = 0),
the staggered magnetization will disappear. For a given magnetic field hc1 < h < hc2, the BEC
density nh(T ) decreases with increasing temperature and goes to zero at a certain temperature,
which defines the critical temperature Tc(h). In the following, we present the numerical results.

In the numerical solutions, we still insert the parameters of BaCuSi2O6 (J = 4.45 meV,
J ′ = 0.13J and J ′′ = 0.026J ), and compare our results with the experimental data.
Figure 3(a) (solid line with squares) exhibits the critical temperature Tc(H ) as a function

3 The staggered magnetization can also be calculated as follows. From equation (3), we have Sx
1�r = 1

2
√

2
s(d�r + d†

�r −
u�r − u�r†) + 1

2
√

2
(t†

�rzd�r + d†
�r t�r z + u†

�r t�r z + t†
�r zu�r ). In calculating 〈Sx

1�r 〉, the terms including tz or t†
z are zero since the

condensed bosons αk consist of u(u†) and d(d†) only. So 〈Sx
1�r 〉 = (−1)r mx = 1

2
√

2
s 1√

N

∑
k ei�k·�r 〈(d�k +d†

�k −u �k −u†
�k)〉.

Inserting uk = χkαk − ρkβ
†
k , d−k = χkβk − ρkα

†
k and considering the condensation of α�k (α†

�k ) at �k = (π, π, 0), we

have 〈Sx
1�r 〉 = − 1√

2
(−1)r s√

N
(χk +ρk )αk with k = (π, π, 0). Considering χ2

k = 1
2 (1+ Ak +Bk

2ωk
), ρ2

k = 1
2 (−1+ Ak +Bk

2ωk
),

and nh(T ) = 1
N 〈α†

k αk〉 Ak +Bk
2ωk

|k=(π,π,0), we can get mx = s
√

nh(T )
2−d1−d2

. d1 and d2 are defined in equation (9).
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(a)

(b)

Figure 3. (a) Critical temperature Tc(h) with J = 4.45 meV, J ′ = 0.13J and J ′′ = 0.026J . The
solid line (with squares) is calculated from equations (12) (with the assumption of 〈s†〉 = 〈s〉 = s)
and the dotted line (with circles) from equations (19) (with the assumption of 〈u†〉 = 〈u〉 = u).
The experimental data for BaCuSi2O6 from [5] are also plotted (�, ×, ∗, �). (b) Specific heat as
a function of temperature for given magnetic field h = 0.8J (H = 26.67 T) (circles), h = 0.9J
(H = 30 T) (squares) and h = 1.0J (H = 33.34 T) (triangles).

of H . Remembering that 0 = 0.7082J and considering g = 2.306, we have Hc1 =
23.6 T. For small magnetic fields (H < 35 T), the results agree with the experimental ones
quantitatively [5], while for larger magnetic field, especially near the saturation field Hc2, the
results deviate a little from the experimental data. Very close to Hc2, the critical temperature
Tc(h) is difficult to obtain. The reason for this may be that s2 is too small and the assumption
of s condensation is not a good starting point. We can determine the critical magnetic field
hc2 at zero temperature from equations (12). With s = 0, we have m = 1, nh(T ) = 1 and
µ = − 3

4 − 1
2 (z J ′ + 1

2 z′ J ′′), and then hc2 = 1 + (z J ′ + 1
2 z′ J ′′). Inserting the values of J ′ and

J ′′, we have hc2 = 1.546J . This is a little larger than the Hc2 = 49 T (∼1.48J ) extrapolated
from the experimental data [5]. The staggered magnetization at Hc2 is zero since s = 0.



4726 H-T Wang et al

Figure 4. Changes in the field-induced staggered magnetization mx with temperature in BaCuSi2O6
with h = 0.75 (squares), h = 0.8 (stars), h = 1.0 (circles), h = 1.2 (diamonds) and
h = 1.3 (triangles).

In figure 3(b), we show the calculated specific heat CH as a function of temperature at
a given magnetic field h = 0.8J (H = 26.67 T), h = 0.9J (H = 30 T) and h = 1.0J
(H = 33.34 T), respectively. At the critical temperature Tc(H ) a peak appears and the
anomaly becomes sharper with increasing magnetic field (H < 35 T). This behaviour agrees
qualitatively with the experiment. At higher magnetic fields a peak can also be obtained, but
the values of the specific heat is much larger than the experimental values.

Near hc1, we fit the data with hc1(T ) − hc1(0) ∝ T α to determine the critical exponent
α. With the temperature approaching zero and the temperature window decreasing, the result
converges to α ∼ 1.523, which agrees well with the experimentally reported value [6]. (With
the revised parameters [6] J ′ = 0.51 meV and J ′′ = 0.168 meV, the fitted α ∼ 1.528.) The
Bose–Einstein Hartree–Fock theory [16, 17], the quantum Monte Carlo simulations [14, 15] on
the coupled dimer models and the self-consistent mean-field theory on an S = 1 Heisenberg
model with large single ion anisotropy [19] gave the same result of α ∼ 1.5. Experimentally,
discrete values were reported in some other materials such as spin dimer systems TlCuCl3

(α ∼ 2.2) and KCuCl3 (α ∼ 2.3) [8]. However, the value also begins to converge to 1.5 [11].
As far as we know, there is no experimental report on the value of the field-induced

staggered magnetization. In figure 4, we show the change in the field-induced staggered
magnetization mx with the external magnetic field and temperature. For a given magnetic
field, the staggered magnetization decreases with increasing temperature and goes to zero at
the critical temperature Tc(h). While at a given temperature, the staggered magnetization goes
up first to a maximum (occurring at h ∼ 1.0, corresponding to the field with the highest Tc in
figure 3(a) (solid line)) with increasing field and then decreases to zero at a certain magnetic
field (depending on the given temperature, see figure 3(a)).

As discussed above, near Hc2, most of the dimers will be in the state of u†|v〉. We assume
〈u†〉 = 〈u〉 = u and repeat similar calculations to study the critical behaviour near Hc2. The
details are presented in appendix B. In figure 3(a) (dotted line), we show the critical temperature
Tc(h) as a function of magnetic field. This curve gives a reasonable result near Hc2. Fitting
the data with hc2(T ) − hc2(0) ∝ T α′

, we obtain α′ ∼ 1.527, nearly equal to the critical
exponent α at Hc1. With u2 = 1, we get hc2 = J + z J ′ + J ′′, while with u2 = 0 we have
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Figure 5. Variation of the critical exponent α near Hc1 with J ′′ (J ′ = 0.13J ).

hc1 = J − 1
2 z J ′ − 1

2 J ′′. These two values agrees well with those obtained with the assumption
of 〈s†〉 = 〈s〉 = s.

It was pointed out that the λ-shaped second-order phase transition will be replaced by
a Kosterlitz–Thouless (KT) phase transition when the distance between the adjacent bilayers
increases with chemical substitutions [5, 26]. Solving equations (12) and (13) with different
J ′′, we find that Tc(H ) decreases with decreasing J ′′ and the shape of the Tc(H ) curve remains
similar. In figure 5, we show the variation of the critical exponent α near Hc1. α stays at about
1.5 and then drops sharply when J ′′ approaches zero. It is interesting that a small hump can be
observed just before the decrease. These behaviours may give a hint of a dimensional crossover.
It should be pointed out that our solutions in the crossover region are still characteristic of a
BEC, which may be an artefact of the present mean-field theory. In our calculations, the local
constraint s†s + u†u + d†d + t†

z tz = 1 is replaced by a global one and the s(s†) bosons are
assumed to be condensed. These approximations work well when s2 is close to 1. At higher
temperatures, or in lower dimensions, thermal and/or quantum fluctuations are large and the
approach does not work well. More detailed and stricter studies, especially those beyond the
mean-field theory, on the crossover behaviour are expected.

5. Summary

In summary, we studied a quasi-two-dimensional antiferromagnet with a square-lattice bilayer
structure with a bond operator formalism. The excitation shows a gap and the gap increases
with increasing temperature. When the energy gap goes to zero by changing the physical
parameters, a quantum phase transition from the disordered dimerized state to the Néel state
occurs. When the energy gap is tuned to zero by applying an external magnetic field, some
of the magnons with momentum (π, π, 0) are condensed and long range order appears in the
plane perpendicular to the applied magnetic field. A phase region with field-induced long
range order is obtained. The temperature and magnetic field dependences of the specific heat
and the staggered magnetization are calculated. The critical exponents around Hc1 and Hc2 are
obtained to be about 1.5. With these results, the very recent experiments on BaCuSi2O6 are
well interpreted. The dimensional crossover with J ′′ approaching 0 is also discussed.
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Appendix A. Self-consistent equations with the assumption of 〈s†〉 = 〈s〉 = s

Following equations (7), s2, µ and m can be obtained by the saddle-point equations:

s2 = 5

2
− 1

N

∑

k

Ak + Bk

2ωk
[n(ω

(1)
k ) + n(ω

(2)
k ) + 1] − 1

N

∑

k

Dk

�k

[
n(�k) + 1

2

]
,

µ = −3

4
+ 1

N

∑

k

[
Ak + Bk + 2Ck

4ωk
[1 + n(ω

(1)

k ) + n(ω
(2)

k )]

+
[

n(�k) + 1

2

]
Dk − 2Fk

2�k

](
z J ′γk − 1

2
z′ J ′′γ ′

k

)
,

m = 1

N

∑

k

[n(ω
(1)

k ) − n(ω
(2)

k )],

(15)

with

ω
(1)
k = ωk − h + ( 1

2 z J ′ + 1
4 z′ J ′′)m

ω
(2)
k = ωk + h − ( 1

2 z J ′ + 1
4 z′ J ′′)m

ωk =
√(

Ak + Bk

2

)2

− Ck
2

�k =
√

D2
k − (2Fk)2

Ak = 1
4 − µ − h + ( 1

2 z J ′ + 1
4 z′ J ′′)m + 1

2 z J ′s2γk − 1
4 z′ J ′′s2γ ′

k

Bk = 1
4 − µ + h − ( 1

2 z J ′ + 1
4 z′ J ′′)m + 1

2 z J ′s2γk − 1
4 z′ J ′′s2γ ′

k

Ck = − 1
2 z J ′s2γk + 1

4 z′ J ′′s2γ ′
k

Dk = 1
4 − µ + 1

2 z J ′s2γk − 1
4 z′ J ′′s2γ ′

k

Fk = 1
4 z J ′s2γk − 1

8 z′ J ′′s2γ ′
k

γk = 1
2 (cos kx + cos ky)

γ ′
k = cos kz

c = µN(1 − s2) − 3
4 Ns2 − N J ′m2 − 1

4 N J ′′m2,

(16)

where z = 4 is the number of the nearest neighbours in a plane and z ′ = 2 the number of the
nearest neighbours in the z-direction.

Appendix B. Self-consistent equations with the assumption of 〈u†〉 = 〈u〉 = u

Near Hc2, the dimer will, with most probability, be in the state of |↑↑〉. We make the assumption
of 〈u†〉 = 〈u〉 = u and the spin operator can then be expressed as

S+
1,2 = 1√

2
[u(tz ∓ s) + (s† ± t†

z )d],
S−

1,2 = (S+
1,2)

†,

Sz
1,2 = 1

2 (u2 − d†d ± s†tz ± t†
z s).

(17)

Inserting the above expression into Hamiltonian (1) and neglecting the three- and
four-operator terms, the Hamiltonian can then be diagonalized with a Fourier–Bogliubov
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transformation as

H =
∑

k

(�1ka†
k ak + �2kb†

k bk + �3kd†
k dk) + C1, (18)

with �1,2k = − 1
4 J − µ + 1

2 J ′u2zγk ∓ �k , �k =
√

( 1
2 J + 1

4 J ′′z′u2γ ′
k)

2 + 1
4 J ′′2u4 sin2 kz ,

�3k = 1
4 J − µ + h − 1

2 J ′mz − 1
2 J ′′m and C1 = 1

4 J Nu2 − h Nu2 + µN(1 − u2) + 1
2 N(J ′z +

J ′′)(mu2 − 1
2 m2). The self-consistent equations are then

u2 = 1 − 1

N

∑

k

[n(�1k) + n(�2k) + n(�3k)],

µ = 1

4
J − h + 1

2
J ′zm + 1

2
J ′′m + 1

N

∑

k

[
[n(�2k) − n(�1k)] J J ′′γ ′

k + J ′′2u2

4�k

+ [n(�2k) + n(�1k)] 1
2 J ′zγk

]
,

m = u2 − 1

N

∑

k

[n(�3k)].

(19)
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